
--i
NASA Contncror

f
Report 178196

ICASE
PS: A NONPROCEDURAL LANGUAGE WITH

DATA TYPES AND MODULES

[? X A - L L - 1 7 8 14-6) ES: A V C h F i x C i k L U R A L N87- 12246
L A N G U A G E K l l r l C B ? A TYPES AHC P L L C l E S l i n a l
h e p o r t : h A S A) 2c p CSCi a 9 E

U C C i d E
G 3 / t l 4 4 3 1 8

Maya B. Gokhale

Contract N o . N A S l - 1 8 1 0 7

October 1 9 8 6

INSTITUTE FOR COblPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universit ies Space Research Associat ion

Nahonal Aeronautics and
Space Administration

bngley R o m m h Carter
Hampton.Vrginia 23665

PS: A NONPROCEDURAL LANGUAGE WITH DATA TYPES AND MODULES

Maya B. Gokhale
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716

The Problem Specification (PS) nonprocedural language is a very high
level language for algorithm specification. PS is suitable for

nonprogrammers, who can specify a problem using mathematically-oriented

equations; for expert programmers, who can prototype different versions of a

software system for evaluation; and for those who wish to use specifications

for portions (if not all) of a program. PS has data types and modules similar
to Modula-2. The compiler generates C code.

In this paper, we first show PS by example, and then discuss efEiciency
issues in scheduling and code generation.

This research was supported in part by the National Aeronautics and Space
Administration under NASA Contract Number NAS1-18107 while the author was in
residence at the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665, and in
part by UDRF Grant LTR860114.

i

PS: A Nonprocedural Language with Data
Types and Modules

Maya B. Gokhale’

Keywords and Concepts: very high level language, equational specification,
automatic program generation

1 Introduction

In this paper we introduce a very high level language for algorithm specifi-
cation. In the Problem Specification (PS) language, the user expresses the
algorithm as a set of equations. The PS compiler analyses the specification
to determine an execution ordering, and generates a procedural program in
the C language (under Berkeley Unix).

PS is intended for a wide user community, ranging from domain expert
to expert programmer. For the domain expert, PS offers a mathematically
oriented language in which to express the problem. For example, notation
used to describe algorithms in numerical analysis can be transcribed with
very slight syntactic modification directly into PS. In this paper, we show a
PS module to do Gaussian Elimination and compare the PS equations with
the algorithm description in a standard numerical analysis text.

At the other extreme, PS is a useful tool for the expert programmer
in that it facilitates rapid prototyping. “Exploratory programming” is a
technique recognized as essential to gaining an understanding of a new ap-
plication area. PS is
useful in breadboarding alternate approaches to a problem. Experience
may be gained from using different versions, each generated from a different
specification in PS. Use of procedural languages to actually code alternate
approaches would be prohibitive in time. Use of AI languages would ne-
cessitate a complete rethinking of the problem for the production version.

In hardware this is referred to as breadboarding.

-

Since data structures in PS are almoat identical to Pascal or Modula data
structures, it is easier to shift from the PS specification to an equivalent
production program than from Lisp or Prolog.

In the continuum between nonprograrnrner and expert, PS can be used to
generate component modules of a system. We recognize that one language
cannot solve all problems for all users. Certain classes of problems can
be solved concisely and easily in PS. Others, which perhaps depend on
idiosyncracies of the operating environment, are better expressed in other
languages. For example, a stream of characters can be converted to a stream
of tokens by the Lez tool (or even acanfi. Each token can then be used by
a PS module in a computation.

The novel features of PS in comparison to similar nonprocedural lan-
guages [2, 4, 7-10, 121 are as follows:

The language is strongly typed. Declarations follow most syntactic
conventions of Pascal or Modula. The compiler enforces type checking
and reports inconsistencies or incompleteness in type usage.

The language is modular. We feel this feature is essential to the s t e p
wise refinement of a problem solution. The basic program unit is the
module, which is 8emrtnticaUy equivalent to a side-effect-free function.

0 Our system is compatible with the external environment. It is easy
to dompose a program of PS modules intermixed with modules in a
procedural language. In our current implementation, the PS compiler
generates a C function from each xhodule description. A module may
invoke other modules written in PS or C. Conversely, a C function
may invoke a PS module.

In this paper we hope to impart a feel for PS through example. The
next section gives examples ranging from simple program fragments to com-
plete PS modules. Finally we discuss the problem of efficiency, especially aa
related to storage.

2 PS by Example

A PS program consists of a sequence of module descriptions. Within the
module, a progriimmer can describe the structure of the data i t e m and the
relationship among data items. The PS compiler then analyzes the data
dependencies; synthesizes a schedule; an ordering to the generation of data

2

type I = 1 .. n;
vir A: array [I] of int; { declare a variable 3

define A[I] = I ; < define a value f o r each element A >

Figure 1: A Simple Example

items; and produces a C program, complete with type and variable decla-
rations and control structure. Since the PS language is nonprocedural, it
contains no control constructs such as ‘goto” or ”for” or “while”. There is
not even the implicit control from one statement to the next in sequence.
This implies that a PS module is unordered. The lexical sequence of equa-
tions is unrelated to computation sequence of the generated program. Since
the programmer does not control the sequence of program execution, the
language is, of necessity, single assignment. The value of a data item may
be defined exactly once. For this reason, we refer to PS as a dataflow lan-
guage. In a PS equation of the form left hand side = ezpression, the left
hand side can be considered the name of an arc (value) on a dataflow graph
and the ezpression is a node (computation) producing the value.

The examples below show how aggregate data items can be given values
without control structures such as loops or recursion; how recurrences are
defined; and how to create structured data types.

2.1 Index Sets

As in Modulc~:! or Pascal, the type statement describes a data structure
which is then used in variable declarations and in equations. Figure 1 illus-
trates a simple use of a subrange type. Each element of A is given a value
by the ‘define” statement because the type identifier I is used to index t h e
array. Use of a subrange type identifier as a subscript denotes universal
quantification over the subrange. Thus, the subrange type declaration is
used to establish an indez $et. Use of the index set to subscript an array
indicates that the equation is true for each element of A indexed by I. This
can be contrasted to the use of iteration control constructs to define multiple
occurrences of an x t i o n in procedural languages. The equivalent procedural
code reads

3

type 1.J = 1 .. n:
. var A . B : array [I, Jl of real:

define A[I , J] = B L J , I1 ;

Figure 2: Ranspose of a Matrix

type I = 1 .. N;
var F i b : array [I] of i n t ;
define

F i b [I l = i f I = 1 then 1
e l se if I = 2 thmm 1
e l s e FibEX-11 + FibEI-23;

Figure 3: Fibonacci Sequence

for I = 1 t o n do
ALII = [I1

Another example is shown in Figure 2, where A is defined as the transpose
of €3. (B must be defined elsewhere, either by another equation or as an input
parameter). The equation is equivalent to the first order logic equation

V I , J (A (I , J] = B(J, I])

Use of the same subscript in A and B denotes the same instance of that sub-
script, so that the first dimension of A corresponds to the second dimension
of B and vice versa.

2.2 Recurrences

Recurrence relations may be expressed in a PS equation. For example,
computation of the first N Fibonacci numberzi is shown in Figure 3.

Here again we use the subrange type 1 to establish an index set. The
conditional equation defines each element of an array Fib. Notice that we
use an array because ofkhe single assignment rule: a variable can receive a

c

4

i . . .

type I = 0 .. N;
var X. Y : array [I3 of i n t :
def ine

X[I] = If 1=0 then 2 else XCI-1]**2;
Y[I] = if I=N then X[O] e l s e Y[I+1] + X I N - 1 1 ;

Figure 4: A Reverse Ordering

value exactly once. Rather than reassign to the same variable, we give values
to successive elements of the vector Fib. The vector records the history of
the computation of the N'tli Fibon~.e i iiumbei as in Lucid IZ]. Adherence to
the single assignment rule allows us to define Fibonacci as a specification.
We shall see in the next section that the compiler converts the specification
into an iteration, and reduces the vector in size. In this case only three
elements are needed regardless of N.

This example illustrates a common pattern of recurrences- definition of
one or more base cases followed by the recurrence relation for the general
cme. Use of the -1 and -2 seem to indicate 'previous" elements of the
array Fib. However, a "previous" element need not be lexicographically
lower in index than a successor. Figure 4 illustrates this point.

In this example, the array X is defined through a recurrence as in Fig-
ure 3. However, in the equation for Y, the previous element of the sequence
is of higher index than the successor. The scheduling component of the
PS compiler can generate iterations of either increasing or decreasing index
values'.

2.3 Record Structures

We have shown vectors and matrices being declared and then used in equa-
tions. PS also has a rich facility for user-defined types. Figure 5 shows the
declaration of a record xint which is used to store an arbitrary precision
integer. The field len holds the size of the integer. val holds each seqment
of the integer. As the example demonstrates, F'S supports dynamically sized
arrays. In this record, the size of the array val depends on the value of the
field len.

' It csnnot however, gencrnte srhitrnry ordrririy,s.

5

t Y P
x i n t = record

len: i n t ;
Val: array[len-¶] of i n t ;
end ;

Figure 5: A Record Structure

2.4 The xadd Module

With this introduction, let us now compose a module in PS. This module
uses the x in t data type shown above. The module xadd, shown in Figure 6
adds two arbitrary precision positive integers. Each item of interest has
been numbered on the left. These parenthesized numbers are not part of
the input. On line (1) is shown the module header. The module name
xadd appears first, followed by the keyword module, the module’s input
parameters (i parentheses), and the output results (i square brackets).
This module has just one output, the item c. The parameters a, b, and c
are of type x in t , which is defined in the module. It is not necessary in PS to
declare a type before it can be used. The parameter BETA is related to the
wordsize. It is 2worddizc-2 , so that a .va l [i] +b . va l [i] does not overflow a
word.

Line (2) declares three subrange types, i, t and subi , which are used
in the equations. Line (3) shows an alternate way to declaring a two di-
mensional array from Figure 2. The two methods are interchangeable (as in
some Pascals).

Line 4 begins the equations. First N, the upper bound for i, t, and the
two arrays sum and ca r ry is defined in terms of the input parameters. The
function max must be defined by the user as another module. Line 5 shows
the definition of ca r ry , which is a recurrence. The base case is for carry [Ol ,
which gives the initial carry in a value of 0. The recursive case is given in the
second arm of the conditional. It is defined to be the previous sum plus the
previous carry divided by the wordsize parameter BETA. Thus if an overflow
is going to occur, the carry will be set to 1, otherwise to 0. Next is the
definition of sum. The initial value sum[O] is the result of adding the two
input values a and b. This sum cannot be expressed simply as a . va l [i l +

b.val[il because the lengths of the two arrays might be different and also,
the range of i is one greater than the larger of a and b. Use of a function

6

(1) xadd : module (a , b : x i n t ; BETA: i n t 1 : [c : x i n t I ;

type
x i n t = record

l e n : i n t ;
V a l : a r ray [0 . . len-1 I of i n t ;

end ; (* record *)
(2) 1.t = 1 .. N ; subi = 1 .. c. len;

(3)
var

sum : a r ray [0 .. N I of a r ray [0 .. N 3 of i n t ;
c a r r y : a r r a y [0 .. N 3 of i n t ;
N: i n t ;

de f ine
(4) N = 1 + m u (a.len , b . l en ;

(5) carryCt1 = if t=O then 0
e l s e (sum[t-l. t-11 + carryCt-11) d i v BETA;

(6) sum[t , i 1 = i f t = 0 then add(a. b)
e l s e i f (i = t then

else
(sum[t-1, i 1 + c a r r y [t - l l) mod BETA)

sum[t-1 , i I ;

(7) c.val[aubi] = sum[N.i] ;

(8) c . l e n = i f sum[N.N] <> 0 then N
e l s e N - 1 ;

end xadd ;

Figure 6: The xadd Module

7

a 111 7 3 7 a== 7371
b 1 2 1 6 5 5 b= 5562

Figure 7: An Example Run of xadd

add aids in modularity. Rather than expressing the sum inline as a large
conditional expression , we can postpone definition of the add function to a
later stage. In fact, we do not show add here for the sake of brevity. Each
digit of the sum may exceed BETA. If a digit is too large, we must do modulo
arithmetic and generate a carry to the next digit.

Subsequent versions (aumCi] for i > 0) ripple the carry across the inte-
ger. New values of sum are defined only along the diagonal (for the arm of
the conditional i = t) . The other values are copied to the t’th row of sum
from the t - 1st row. For the t’th row and t’th column, the result of the t’th
carry is factored into the result.

Lines (7) and (8) define a value for the output parameter c. The v a l
array is simply the last row of sum. The index subi is used rather than
i because, the c vector may be one digit smaller than sum. The length is
either N, if there was carry, or N -1 otherwise.

Let us trace the behavior of the xadd module when called with the p”
rameters a . v a l = (1,7,3,7), b .val = (2’6’5’5) and BETA = 8, 90 that
each valCi1 can hold a number in the range -8 . . 7 if two’s complement
representation is used for integers. The numbers are stored with least sig-
nificant digit first, so that with a= 7371, a .Val [Ol= 1. Figure 7 shows a
tabular representation of carry and s u m for each value of t and I in the
range.

2.5 The Gauss Module

From arbitrary precision addition, let us turn to a problem in linear algebra.
Gauss elimination is a popular technique for solving a set of n equations in
n unknowns. The non-pivoting version of the algorithm is adapted from [3]
as follows:

Given the n x (n + 1) matrix A containing a square matrix of order n
in its first n columns and the n-vector of righthand sides in its last column,
we perform the elimination in (n - 1) steps, k = 1,2,. . . ,n - 1. 'In step k,
the elements ai:) with i , j > k are transformed according to

i = k + l , k + % ,..., n, j = k + l , ..., n , n + l .
n

We transcribe these formulas into PS. Figure 8 shows the Gauss mod-
ule. Notice that in this module, we have put the definitions first and the
declarations after. PS allows statements io be given in arbitrary order. Tne
define section shows the PS form of the two equations. m is the vector of
successive multipliers. aOut holds intermediate forms of the matrix a.

In the module, there are three equations, one for each local variable and
one for the output matrix C. The definition of m uses a conditional expression.
For each i and k such that i > k, a multiplier element is defined in terms
of the current iteration of a0ut. All other multiplier elements are 0.

The first version of the aOut matrix takes its value from the input matrix
a. Subsequent versions are defined in terms of previous aOuts and previous
ms. Thus the two arrays m and aOut are defined by a mutual recurrence.
The output from the module is the last iteration of aOut. The module has
inputs a and n. which are respectively the original matrix of simultaneous
equations and the number of rows or columns. a contains an additional
column for the right hand sides of the equations. Output is the array G in
upper triangular form. Values for the unknowns may be derived from G by
back substitution.

The declarations consist of type and local variable declarations. The
type section shows that three index sets are used. k is an iteration index.
i and j are used to index the matrix a. i is also used to index the array of
mu1 ti plie rs .

We have tried to show with the Gauss and xadd modules representative
problems and their solutions in PS. In the next section we address a question
which readily comes to mind when examining the PS modules: what is the
relationship between data structures declared in PS and those generated in
the C program. If the relationship is one-bone, the generated program is
YO storage inefficient as to be unusable.

9

Gauss: module(a: array [i . j] of r e a l ; N: i n t) :
[G: a r ray [i, j] of r ea l] ;

def ine
m[k.i] = i f (i>k) then aOut[k,i.k] / aOut[k.k.k]

e l s e 0;

aOut[k, i . j] = i f (k=l) then a [i , j]
e l s e

i f ((i>k-1) and (j > k - l)) then
aOut [k-1. i , j] - m[k-l , i l *aOut [k-1 ,k-1 , j l

a0utCk-1.i. j]
e l s e i f (i<=k-1) (* and a l l j *) then

e l s e 0;

G = aOut [N];

type
k. i = 1 .. N;
j = 1 .. N + 1 ;

var
m: array [k. i l of r e a l ; (* mul t ip l i e r s *)
a0ut: a r r ay [k . i , j] of r e a l ; (* each successive generat ion

of a [i , j] i s represented
by k ’ th dimension *)

end Gauss;

Figure 8: Gauss Module

10

I

3 Storage Reuse in the Generated Code

The single assignment property of variables in PS makes it possible for the
compiler to schedule the equations using only dataflow analysis. However, it
also results in a plethora of variables in the PS program, and therefore, if a
simpleminded storage allocation is implemented, in the generated program.
Indeed, excessive use of storage has long been a criticism of applicative lan-
guages in general. Our god is to have significantly fewer storage iocations
allocated in the generated program than are declared in the PS program.
In this chapter we discuss some techniques to minimize the storage require-
ments of the generated program. Some of the issues discussed below occur in
the reuse of temporaries and in register allocation in compiler optimization

We would Eke to have the structure of the storage allocated in the gen-
erated program resemble the PS data structures as much as possible. Thus
we reject a Lisplike heap in which to store data as linked lists. If the PS
structure is an array, we would like the C structure to bear some resem-
blance to an array; if the PS structure is a record, we would like to generate
a C structure declaration, This constraint is imposed to make the interface
between PS modules and C modules as simple as possible.

In PS, every variable is local to exactly one module (since there are no
global variables and since modules m a y not be nested). A variable can be an
input parameter, an output result, or a local variable. We will first consider
storage reuse of local variables and then the problem of efficient parameter
passing.

[I, 111.

3.1 Virtual Dimensions

Because we are concerned with the large-scale reuse of storage, we will nct
attempt to reuse scalars within a module. Instead we will concentrate on
arrays, in particular, on locating virtual array dimensions. (Structures con-
taining arrays are also amenable, with some additional analysis, to these
techniques). If an array dimension is physical, that diniension will have the
same number of elements in the generated program as in the PS module. If
a dimension is virtual, there will be fewer elements in the generated program
than in the PS program. The number of representative elements required
in the generated program is called the window of that dimension. Analysis
of the expressions used to subscript an array on the right hand side of an
assertion help us locate virtual dimensions and determine the size of the

11

window of a virtual dimension.

3.2

Example:
Consider the specification of factorial:

f a c t o r i a l : module(n: i n t) : [facout: i n t l ;
type I = 0 .. n;
v a r f a c : a r r ay [I] of i n t ;
de f ine

Virtual Dimensions in Recursive Equations

f a c [i] = If i = 0 then 1 else

f acout = f ac In];
fac [i-11*1;

end f a c t o r i a l :

f a c must be declared as a one dimensional array. However, only one ele-
ment of f ac is needed, f ac [nl , and to compute any f a c [I], at most one
other element of f ac is needed, f ac [i- 13. This suggests that we need only
reserve two storage locations for fac , one for the current element and one
for the new element being computed. Thus the 1 dimension of f a c is vir-
tual with window size two. The generated program need only have a vector
of two elements, regardless of the n. Notice that we have taken a formal
specification of factorial, and constructed an iterative program which reuses
storage. Although this is a relatively simple transformation from tail recur-
sion to iteration, the same optimization can be applied to non-tail recursive
equations (such as the specification of xadd in Figure 6). [5] gives a full
discussion of locating virtual dimensions in a set of recursive equations. In
his technique, the scheduling component of the compiler looks in recursive
array definitions for the pattern i - k on the the i’th dimension of the ar-
ray reference on the right hand side of the definition. Here, k stands for a
manifest constant positive integer.

In the PS compiler, a different technique is used. To locate a virtual
dimension, we form the dependency vector for each recursive occurrence
in an array definition. For each dimension j , the j’th component of the
dependency vector is defined as the difference

Lhaj - Rhaj

where Lhs and Rhs are the subscript expressions used to index the j ’th
dimension. For factorial, the dependency vector is

12

c .,

(i - (i - I)) = (1)

from which we can derive the window size. Notice that by using the depen-
dency vector, we are freed from looking for a specific pattern such as i - k.
Exactly the same dependency vector is obtained if the recursive equation
reads

type I = 0 .. n-1;
define

f a c [i + l] = i f i = 0 then 1 e l s e
fac [i l*(i+l) ;

[S] discusses the use of deperidency vectors to locate virtual dimensions in
the context of scheduling for parallel execution.
The C program generated from the original formulation of the factorial
module reads as follows:

i n t fac tor ia l (n)
i n t n;

i
int f ac 121 ;
i n t f acout ;
i n t 1;
f o r (i=O; i <= n; I++)

<
fac111 = (i = = O) ? 1 :

facCo1 = facC11;
>

fac[Ol*i;

f acout = f ac Cil ;
return f acou t ;
3

Additional optimizations are possible (for example, eliminating f acout).
Since these can be done by fairly standard optimizing compilers, we will not
consider them further here.

13

3.3 Virtual Dimensions in Nonrecursive Equations

The dependency graph technique is used in the presence of recursive equa-
tions. However, it is also possible to have a virtual dimension for an array
used in a nonrecursive example.

Example :

x[il = a[il + b[il;
CIil = XCiI * XCiI ;

The two equations are not directly or mutually recursive. Depending on the
loop structure of the generated code, however, the local variable x can either
be a scalar or a vector. If a separate loop is generated for each equation, x
must be represented by a vector:

for (i=start-i;i<=stop-i; i++)
xCi1 = aCi1 + bCil;

for (i=start-i ; i<=stop-i ; i++)
CCiI = XIiI + XCiI ;

This schedule can be improved by putting the two equations into a single
loop. Not only is there reduced loop set up and evaluate overhead, but the
dimensionality of x can be reduced:

for (i=start,i;i<=atop-i; i++)
<
CCiI = x + x;
1

x = a[il + b[i];

Thus a second form of memory optimization in local variables involves
maximizing the scope of loops, so that interim variables can have one or
more dimension become virtual.

3.4 Parameter Passing

As a single assignment language, PS has copy-in copy-out semantics on
parameters to modules. If this mode of parameter transmission is used in the

14

,

h

generated program, serious inefficiency is incurred in the amount of storage
used. In fact, other nonprocedural languages [9] have not allowed modules
because of these inefficiencies. We deem the module to be indispensible, and
therefore make special effort to reduce the overhead of parameter passing.

We again limit our discussion to arrays. Although it also applies to
arrays within structures, the latter case is more complicated in details, and
adds little to the basic criteria for parameter space reuse.

We would like to replace whenever possible a strict pass-by-value of an
array by a pass by reference. However, the parameter passing mode must
be conktent. We cannot with one call to module M pass an array A by
reference and with another call, pass by value. Therefore, we opt always to
pass by reference. For each array A passed to a module in a reference such
as

(* Aaaertion q *) X = M(A);

where M is a module which returns one result whose type is compatible with
x,

e Is A used in an assertion which is scheduled after Assertion q?

If so, generate code to copy A to a new temporary variable T, and
pass to module M a reference to T.

e If not, pass a reference to A itself. In this case, we have avoided the
overhead of copying the array.

Now, consider the role of A in M. Let us call the formal parameter A’
to distinguish it from the actual parameter A. We are guaranteed that A is
passed ‘by value” in the sense that any change to A’ in M does not affect the
value(s) of the output parameters of the caller of M. This was guaranteed by
the parameter passing analysis above. At the PS level, A’ cannot appear on
the left hand side of an assertion. This restriction does not of course apply
in the generated C code. If there are local variables or output parameters
of the aame type aa A’, it might be desirable to reuse A’ storage for another
variable.

Example :

(* C and B are local variables or output
parameters of the aame type a s APrlme *)

15

C [i] = A P r i m e C i I * 2;
B [i] = A P r i m e C i l + C [i l ;

Here, after virtual dimension analysis, C is reduced to a scalar. Then, since
B has the same type as A P r i m e , we can alias the former to the latter, giving
the following output C code:

C = A P r i m e C i I * 2;
A P r i m e [i l += C ;

In this case, we have avoided having the variable B appear in the generated
program. Before such a transformation can be done, we must of course insure
that all uses of A P r i m e have been completed prior to the reassignment. If
such a schedule cannot be effected, (for example, if A P r i m e and B are needed
in the same equation), then B must be allocated its own storage.

The analysis just outlined can be used in the Gauss to give the input
and output matrices the same locations.

4 Conclusion

In this paper, we have introduced a new nonprocedural language PS in
which equations define the relationships between data. The language p r e
vides user-defined data types in a Pascal or Modula-2 framework, and ac-
cepts a specification which a sequence of module descriptions. The current
implementation of the PS compiler is written in Berkeley Pascal using the
llama parser generator and generates C code.

We have discussed several optimizations to minimize storage require-
ments in the generated program. We attempt to locate virtual array di-
mensions, so that the virtual dimension may be replaced in the generated
program by a window of elements. We have seen how loop merging can
uncover virtual dimensions, so that local variables can be reduced in di-
mensionality. Parameter passing is another area in which storage reuse is
important. We have discussed conditions under which it is possible to pass
by reference rather than by value, thus saving space and avoiding unneces-
sary copying.

.

16

5 Bibliography

[l] Aho, A., et. al., Compilerx Principles, Techniques, and Tools, Addison-
Wesley, 1986.

[2] Ashcroft, E. and Wadge, W., “Lucid, A Nonprocedural Language with
Iteration,” CACM July 1977.

[3] Dahlquist, G. and Bjork, A., Numerical Methods, Prentice-Hall, 1974.

[4] Gokhale, M., “Generating Parallel Programs from Nonprocedural Spec-
ifications,” 4th JCIT, 1984.

[5] Lu, K.-S., “MODEL Program Generator: System and Programming
n uocumexitation,” TR 1982, U. of Pennsyhaia.

[6] Myers, T. and Gokhale, M., “Parallel Scheduling of Recursively Defined
Arrays,” submitted to the Journal of Symbolic Computation, 1986.

[7] Pneuli, A. and Prywes, N., “Scheduling Equational Specifications and
Nonprocedural Programs,” Chapter 13 in Automatic Program Con-
struction Techniques, MacMillan 1984.

[8] Prywes, N., et. al., “Automatic Program Generation in Distributed
Cooperative Computation,” IEEE Ransactions on Systems, Man, and
Cybernetics, vol. SMC-14, No. 2, 1984.

[9] Prywes, N. et. al., “Programming Supercomputers in an Equational
Language,” First International Conference on Supercomputing Sys-
tems, 1985.

[lo] Tinaztepe, C., et. al., ”Generation of Software for Computer Con-
trolled Test Equipment for Testing Analog Circuits,” IEEE Transac-
tions on Circuits and Systems, 1979.

[ll] Raoult, J., and Sethi, R., “The Global Storage Needs of a Subcompu-
tation,” ACM Symposium on Principles of Programming Languages,
1984.

[12] Shi, Y., “ Very-High Level Concurrent Programming,” Ph.D disserta-
tion in CS, U. of Pennsylvania, 1984.

17

Standard Bibliographic Page

1 . Report No. NASA CR-178196
ICASE Report No. 86-67

2. Government Accession No.

PS: A NONPROCEDURAL LANGUAGE WITH
DATA TYPES AND MODULES

19. Security Classif.(of this report) 20. Security Classif.(of this page)
Unclassified - Unclassified

7 . Author(s)

Maya B. Gokhale

21. No. of Pages 22. Price
19 A0 2

3. Performing Organization Name and Address
Institute for Computer Applications in Science

Mail Stop 132C, NASA Langley Research Center
and Engineering

HamDton.VA2366515=- - -
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
__ Washington, D.C. 20546
15. Supplementary Notes

3. Recipient’s Catalog No.

5. Report Date

October 1986
6. Performing Organization Code

8. Performing Organization Report No.

86-67
10. Work Unit No.

11. Contract or Grant No.
NAS1-18107

13. Type of Report and Period Covered

Langley Technical Monitor:
J. C. South

Int. Conf. on Software
Engineering

Final Report
16. Abstract

The Problem Specification (PS) nonprocedural language is a very high level
language for algorithm specification. PS is suitable for nonprogrammers, who can
specify a problem using mathematically-oriented equatins; for expert
programmers, who can prototype different versions of a software system for
evaluation; and f o r those who wish to use specifications for portions (if not
all) of a program. PS has data types and modules similar to Modula-2. The
compiler generates C code.

In this paper, we first show PS by example, and then discuss efficiency issues
in scheduling and code generation.

17. Key Words (Suggested by Authors(s))

very high level language, equational
specification, automatic program
generation

18. Distribution Statement

61 - Computer Programming
and Software
62 - Computer Systems

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA LaDgIGy Form 63 (June 1985)

, ~~~-

